About Us
The Peter O’Donnell Jr. Brain Institute tackles the most complex problems in the brain. From neurologic diseases, spanning autism to Alzheimer’s, to psychiatric diseases, including addictions and depression, to brain repair strategies for injuries as diverse as stroke and spinal cord trauma, we are embracing the biggest challenges of our time.
A Mission that Spans Research, Education, & Clinical Care
We work to improve the lives of people with neurologic and psychiatric illnesses through:
- Exceptional clinical care that translates research to the bedside quickly. U.S. News and World Report ranks us among the top neurology and neurosurgery hospitals in the country.
- Pioneering research in areas from Duchenne muscular dystrophy to Alzheimer’s disease to depression, and much more, that leads directly to improved patient care.
- High-quality education for tomorrow’s leaders, in a wide variety of areas. Our programs feature mentoring from our expert faculty and access to the latest technologies in brain research and care.
To accomplish our mission, we empower exceptional faculty, trainees, and clinical specialists including diverse researchers Marc Diamond, M.D., Eric Olson, Ph.D., Joseph Takahashi, Ph.D., and Carol Tamminga, M.D. – to pursue their passions.

Molecular Pathways Important for Human Brain Evolution
Genevieve Konopka, Ph.D., investigates the molecular pathways important for human brain evolution that are also at risk in cognitive disorders such as autism and Alzheimer’s disease. Her lab uses a combination of human neurons, animal models, and primate comparative genomics to uncover human-specific, disease-relevant patterns of gene expression.

Electrophysiology of Human Memory
Bradley Lega, M.D., is co-director of UT Southwestern’s comprehensive epilepsy program and a national expert on the use of stereo EEG to locate the origin of epileptic seizures in the brain. His work examines direct recordings from patients to develop strategies that can improve memory function and restore memory for patients with brain injuries or tumors.

Circadian Revelations
Joseph Takahashi, Ph.D., has pioneered the use of forward genetics and positional cloning in the mouse as a tool for discovery of genes underlying neurobiology and behavior. His discovery of the mouse and human clock genes led to a description of a conserved circadian clock mechanism in animals.

The Biology of Psychoses
Carol Tamminga, M.D., leads the Division of Translational Neuroscience in Schizophrenia with the goal of understanding the pathophysiology of schizophrenia and related disorders. The group’s research explores how the brain makes a hallucination or a delusion, and is providing insight at the cellular and synaptic levels.

Taking the Guesswork Out of Depression Treatment
Madhukar Trivedi, M.D., and his team focus on pharmacological, psychosocial, and nonpharmacological treatments for depression. Dr. Trivedi, Director of the Center for Depression Research and Clinical Care leads a national trial that has produced what scientists are calling the project’s flagship finding: a computer that can accurately predict whether an antidepressant will work based on a patient’s brain activity.